Kernel smoothing on manifolds
Authors: Eunseong Bae, Wolfgang Polonik
Abstract: Under the assumption that data lie on a compact (unknown) manifold without boundary, we derive finite sample bounds for kernel smoothing and its (first and second) derivatives, and we establish asymptotic normality through Berry-Esseen type bounds. Special cases include kernel density estimation, kernel regression and the heat kernel signature. Connections to the graph Laplacian are also discussed.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.