AutoOpt: A Dataset and a Unified Framework for Automating Optimization Problem Solving
Authors: Ankur Sinha, Shobhit Arora, Dhaval Pujara
Abstract: This study presents AutoOpt-11k, a unique image dataset of over 11,000 handwritten and printed mathematical optimization models corresponding to single-objective, multi-objective, multi-level, and stochastic optimization problems exhibiting various types of complexities such as non-linearity, non-convexity, non-differentiability, discontinuity, and high-dimensionality. The labels consist of the LaTeX representation for all the images and modeling language representation for a subset of images. The dataset is created by 25 experts following ethical data creation guidelines and verified in two-phases to avoid errors. Further, we develop AutoOpt framework, a machine learning based automated approach for solving optimization problems, where the user just needs to provide an image of the formulation and AutoOpt solves it efficiently without any further human intervention. AutoOpt framework consists of three Modules: (i) M1 (Image_to_Text)- a deep learning model performs the Mathematical Expression Recognition (MER) task to generate the LaTeX code corresponding to the optimization formulation in image; (ii) M2 (Text_to_Text)- a small-scale fine-tuned LLM generates the PYOMO script (optimization modeling language) from LaTeX code; (iii) M3 (Optimization)- a Bilevel Optimization based Decomposition (BOBD) method solves the optimization formulation described in the PYOMO script. We use AutoOpt-11k dataset for training and testing of deep learning models employed in AutoOpt. The deep learning model for MER task (M1) outperforms ChatGPT, Gemini and Nougat on BLEU score metric. BOBD method (M3), which is a hybrid approach, yields better results on complex test problems compared to common approaches, like interior-point algorithm and genetic algorithm.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.