Large Connectome Model: An fMRI Foundation Model of Brain Connectomes Empowered by Brain-Environment Interaction in Multitask Learning Landscape

Authors: Ziquan Wei, Tingting Dan, Guorong Wu

12 pages 6 figures
License: CC BY 4.0

Abstract: A reliable foundation model of functional neuroimages is critical to promote clinical applications where the performance of current AI models is significantly impeded by a limited sample size. To that end, tremendous efforts have been made to pretraining large models on extensive unlabeled fMRI data using scalable self-supervised learning. Since self-supervision is not necessarily aligned with the brain-to-outcome relationship, most foundation models are suboptimal to the downstream task, such as predicting disease outcomes. By capitalizing on rich environmental variables and demographic data along with an unprecedented amount of functional neuroimages, we form the brain modeling as a multitask learning and present a scalable model architecture for (i) multitask pretraining by tokenizing multiple brain-environment interactions (BEI) and (ii) semi-supervised finetuning by assigning pseudo-labels of pretrained BEI. We have evaluated our foundation model on a variety of applications, including sex prediction, human behavior recognition, and disease early diagnosis of Autism, Parkinson's disease, Alzheimer's disease, and {Schizophrenia}, where promising results indicate the great potential to facilitate current neuroimaging applications in clinical routines.

Submitted to arXiv on 21 Oct. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.