SAGE: A Realistic Benchmark for Semantic Understanding

Authors: Samarth Goel, Reagan J. Lee, Kannan Ramchandran

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
License: CC BY 4.0

Abstract: As large language models (LLMs) achieve strong performance on traditional benchmarks, there is an urgent need for more challenging evaluation frameworks that probe deeper aspects of semantic understanding. We introduce SAGE (Semantic Alignment & Generalization Evaluation), a rigorous benchmark designed to assess both embedding models and similarity metrics across five categories: Human Preference Alignment, Transformation Robustness, Information Sensitivity, Clustering Performance, and Retrieval Robustness. Unlike existing benchmarks that focus on isolated capabilities, SAGE evaluates semantic understanding through adversarial conditions, noisy transformations, and nuanced human judgment tasks across 30+ datasets. Our comprehensive evaluation of 9 embedding models and classical metrics reveals significant performance gaps, with no single approach excelling across all dimensions. For instance, while state-of-the-art embedding models like OpenAI's text-embedding-3-large dominate in aligning with human preferences (0.682 vs. 0.591 for the best classical metric), they are significantly outperformed by classical metrics on information sensitivity tasks, where Jaccard Similarity achieves a score of 0.905 compared to the top embedding score of 0.794. SAGE further uncovers critical trade-offs: OpenAI's text-embedding-3-small achieves the highest clustering performance (0.483) but demonstrates extreme brittleness with the lowest robustness score (0.011). SAGE exposes critical limitations in current semantic understanding capabilities and provides a more realistic assessment of model robustness for real-world deployment.

Submitted to arXiv on 25 Sep. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.