UniECG: Understanding and Generating ECG in One Unified Model
Authors: Jiarui Jin, Haoyu Wang, Xiang Lan, Jun Li, Gaofeng Cheng, Hongyan Li, Shenda Hong
Abstract: Recent unified models such as GPT-5 have achieved encouraging progress on vision-language tasks. However, these unified models typically fail to correctly understand ECG signals and provide accurate medical diagnoses, nor can they correctly generate ECG signals. To address these limitations, we propose UniECG, the first unified model for ECG capable of concurrently performing evidence-based ECG interpretation and text-conditioned ECG generation tasks. Through a decoupled two-stage training approach, the model first learns evidence-based interpretation skills (ECG-to-Text), and then injects ECG generation capabilities (Text-to-ECG) via latent space alignment. UniECG can autonomously choose to interpret or generate an ECG based on user input, significantly extending the capability boundaries of current ECG models. Our code and checkpoints will be made publicly available at https://github.com/PKUDigitalHealth/UniECG upon acceptance.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.