Towards an AI-Augmented Textbook

Authors: LearnLM Team, Google, :, Amy Wang, Anna Iurchenko, Anisha Choudhury, Alicia Martín, Amir Globerson, Avinatan Hassidim, Ayça Çakmakli, Ayelet Shasha Evron, Charlie Yang, Courtney Heldreth, Diana Akrong, Gal Elidan, Hairong Mu, Ian Li, Ido Cohen, Katherine Chou, Komal Singh, Lev Borovoi, Lidan Hackmon, Lior Belinsky, Michael Fink, Niv Efron, Preeti Singh, Rena Levitt, Shashank Agarwal, Shay Sharon, Tracey Lee-Joe, Xiaohong Hao, Yael Gold-Zamir, Yael Haramaty, Yishay Mor, Yoav Bar Sinai, Yossi Matias

Abstract: Textbooks are a cornerstone of education, but they have a fundamental limitation: they are a one-size-fits-all medium. Any new material or alternative representation requires arduous human effort, so that textbooks cannot be adapted in a scalable manner. We present an approach for transforming and augmenting textbooks using generative AI, adding layers of multiple representations and personalization while maintaining content integrity and quality. We refer to the system built with this approach as Learn Your Way. We report pedagogical evaluations of the different transformations and augmentations, and present the results of a a randomized control trial, highlighting the advantages of learning with Learn Your Way over regular textbook usage.

Submitted to arXiv on 13 Sep. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.