Governable AI: Provable Safety Under Extreme Threat Models
Authors: Donglin Wang, Weiyun Liang, Chunyuan Chen, Jing Xu, Yulong Fu
Abstract: As AI rapidly advances, the security risks posed by AI are becoming increasingly severe, especially in critical scenarios, including those posing existential risks. If AI becomes uncontrollable, manipulated, or actively evades safety mechanisms, it could trigger systemic disasters. Existing AI safety approaches-such as model enhancement, value alignment, and human intervention-suffer from fundamental, in-principle limitations when facing AI with extreme motivations and unlimited intelligence, and cannot guarantee security. To address this challenge, we propose a Governable AI (GAI) framework that shifts from traditional internal constraints to externally enforced structural compliance based on cryptographic mechanisms that are computationally infeasible to break, even for future AI, under the defined threat model and well-established cryptographic assumptions.The GAI framework is composed of a simple yet reliable, fully deterministic, powerful, flexible, and general-purpose rule enforcement module (REM); governance rules; and a governable secure super-platform (GSSP) that offers end-to-end protection against compromise or subversion by AI. The decoupling of the governance rules and the technical platform further enables a feasible and generalizable technical pathway for the safety governance of AI. REM enforces the bottom line defined by governance rules, while GSSP ensures non-bypassability, tamper-resistance, and unforgeability to eliminate all identified attack vectors. This paper also presents a rigorous formal proof of the security properties of this mechanism and demonstrates its effectiveness through a prototype implementation evaluated in representative high-stakes scenarios.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.