AgentFly: Fine-tuning LLM Agents without Fine-tuning LLMs

Authors: Huichi Zhou, Yihang Chen, Siyuan Guo, Xue Yan, Kin Hei Lee, Zihan Wang, Ka Yiu Lee, Guchun Zhang, Kun Shao, Linyi Yang, Jun Wang

License: CC BY 4.0

Abstract: In this paper, we introduce a novel learning paradigm for adaptive Large Language Model (LLM) agents that eliminates the need for fine-tuning the underlying LLMs. Existing approaches are often either rigid, relying on static, handcrafted reflection workflows, or computationally intensive, requiring gradient updates of LLM model parameters. In contrast, our method enables low-cost continual adaptation via memory-based online reinforcement learning. We formalise this as a Memory-augmented Markov Decision Process (M-MDP), equipped with a neural case-selection policy to guide action decisions. Past experiences are stored in an episodic memory, either differentiable or non-parametric. The policy is continually updated based on environmental feedback through a memory rewriting mechanism, whereas policy improvement is achieved through efficient memory reading (retrieval). We instantiate our agent model in the deep research setting, namely AgentFly, which attains top-1 on GAIA validation ($87.88\%$ Pass@$3$) and $79.40\%$ on the test set. It reaches $66.6\%$ F1 and $80.4\%$ PM on the DeepResearcher dataset, outperforming the state-of-the-art training-based method, while case-based memory adds $4.7\%$ to $9.6\%$ absolute points on out-of-distribution tasks. Our approach offers a scalable and efficient pathway for developing generalist LLM agents capable of continuous, real-time learning without gradient updates, advancing machine learning towards open-ended skill acquisition and deep research scenarios. The code is available at https://github.com/Agent-on-the-Fly/AgentFly.

Submitted to arXiv on 22 Aug. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.