Generating Query-Relevant Document Summaries via Reinforcement Learning

Authors: Nitin Yadav, Changsung Kang, Hongwei Shang, Ming Sun

License: CC BY 4.0

Abstract: E-commerce search engines often rely solely on product titles as input for ranking models with latency constraints. However, this approach can result in suboptimal relevance predictions, as product titles often lack sufficient detail to capture query intent. While product descriptions provide richer information, their verbosity and length make them unsuitable for real-time ranking, particularly for computationally expensive architectures like cross-encoder ranking models. To address this challenge, we propose ReLSum, a novel reinforcement learning framework designed to generate concise, query-relevant summaries of product descriptions optimized for search relevance. ReLSum leverages relevance scores as rewards to align the objectives of summarization and ranking, effectively overcoming limitations of prior methods, such as misaligned learning targets. The framework employs a trainable large language model (LLM) to produce summaries, which are then used as input for a cross-encoder ranking model. Experimental results demonstrate significant improvements in offline metrics, including recall and NDCG, as well as online user engagement metrics. ReLSum provides a scalable and efficient solution for enhancing search relevance in large-scale e-commerce systems.

Submitted to arXiv on 11 Aug. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.