Pushing the Envelope of LLM Inference on AI-PC
Authors: Evangelos Georganas, Dhiraj Kalamkar, Alexander Heinecke
Abstract: The advent of ultra-low-bit LLM models (1/1.58/2-bit), which match the perplexity and end-task performance of their full-precision counterparts using the same model size, is ushering in a new era of LLM inference for resource-constrained environments such as edge devices and AI PCs. While these quantization advances promise models that are more cost-effective in terms of latency, memory, throughput, and energy consumption, the computational efficiency of state-of-the-art (SOTA) inference runtimes (e.g., bitnet.cpp) used to deploy them remains underexplored. In this work, we take a bottom-up approach: we first design and implement 1-bit and 2-bit microkernels optimized for modern CPUs, achieving peak computational efficiency across a variety of CPU platforms. We integrate these microkernels into a state-of-the-art LLM inference framework, namely PyTorch-TPP, and present end-to-end inference results with 2-bit models that outperform the current SOTA runtime bitnet.cpp by up to 2.2x, and deliver up to 7x speedup compared to the 16-bit model inference. Our optimized runtime advances the state of LLM inference on AI PCs and edge devices, paving the way for efficient deployment of ultra-low-bit LLM models.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.