Agent Lightning: Train ANY AI Agents with Reinforcement Learning

Authors: Xufang Luo, Yuge Zhang, Zhiyuan He, Zilong Wang, Siyun Zhao, Dongsheng Li, Luna K. Qiu, Yuqing Yang

Abstract: We present Agent Lightning, a flexible and extensible framework that enables Reinforcement Learning (RL)-based training of Large Language Models (LLMs) for any AI agent. Unlike existing methods that tightly couple RL training with agent or rely on sequence concatenation with masking, Agent Lightning achieves complete decoupling between agent execution and training, allowing seamless integration with existing agents developed via diverse ways (e.g., using frameworks like LangChain, OpenAI Agents SDK, AutoGen, and building from scratch) with almost ZERO code modifications. By formulating agent execution as Markov decision process, we define an unified data interface and propose a hierarchical RL algorithm, LightningRL, which contains a credit assignment module, allowing us to decompose trajectories generated by ANY agents into training transition. This enables RL to handle complex interaction logic, such as multi-agent scenarios and dynamic workflows. For the system design, we introduce a Training-Agent Disaggregation architecture, and brings agent observability frameworks into agent runtime, providing a standardized agent finetuning interface. Experiments across text-to-SQL, retrieval-augmented generation, and math tool-use tasks demonstrate stable, continuous improvements, showcasing the framework's potential for real-world agent training and deployment.

Submitted to arXiv on 05 Aug. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.