PhishParrot: LLM-Driven Adaptive Crawling to Unveil Cloaked Phishing Sites

Authors: Hiroki Nakano, Takashi Koide, Daiki Chiba

Accepted for publication at IEEE GLOBECOM 2025
License: CC BY 4.0

Abstract: Phishing attacks continue to evolve, with cloaking techniques posing a significant challenge to detection efforts. Cloaking allows attackers to display phishing sites only to specific users while presenting legitimate pages to security crawlers, rendering traditional detection systems ineffective. This research proposes PhishParrot, a novel crawling environment optimization system designed to counter cloaking techniques. PhishParrot leverages the contextual analysis capabilities of Large Language Models (LLMs) to identify potential patterns in crawling information, enabling the construction of optimal user profiles capable of bypassing cloaking mechanisms. The system accumulates information on phishing sites collected from diverse environments. It then adapts browser settings and network configurations to match the attacker's target user conditions based on information extracted from similar cases. A 21-day evaluation showed that PhishParrot improved detection accuracy by up to 33.8% over standard analysis systems, yielding 91 distinct crawling environments for diverse conditions targeted by attackers. The findings confirm that the combination of similar-case extraction and LLM-based context analysis is an effective approach for detecting cloaked phishing attacks.

Submitted to arXiv on 04 Aug. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.