MagicVL-2B: Empowering Vision-Language Models on Mobile Devices with Lightweight Visual Encoders via Curriculum Learning

Authors: Yi Liu, Xiao Xu, Zeyu Xu, Meng Zhang, Yibo Li, Haoyu Chen, Junkang Zhang, Qiang Wang, Jifa Sun, Siling Lin, Shengxun Cheng, Lingshu Zhang, Kang Wang

Abstract: Vision-Language Models (VLMs) have achieved remarkable breakthroughs in recent years, enabling a diverse array of applications in everyday life. However, the substantial computational and storage demands of VLMs pose significant challenges for their efficient deployment on mobile devices, which represent the most ubiquitous and accessible computing platforms today. In this work, we introduce MagicVL-2B, a novel VLM meticulously optimized for flagship smartphones. MagicVL-2B leverages a lightweight visual encoder with fewer than 100M parameters and features a redesigned dynamic resolution scheme that adaptively generates image tokens without excessive modification of image dimensions. To further enhance the performance of this compact encoder within VLMs, we propose a multimodal curriculum learning strategy that incrementally increases task difficulty and data information density throughout training. This approach substantially improves the model's performance across a variety of sub-tasks. Extensive evaluations on standard VLM benchmarks demonstrate that MagicVL-2B matches the accuracy of current state-of-the-art models while reducing on-device power consumption by 41.1%. These results establish MagicVL-2B as a practical and robust solution for real-world mobile vision-language applications, enabling advanced multimodal intelligence to run directly on smartphones.

Submitted to arXiv on 03 Aug. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.