Taming Uncertainty via Automation: Observing, Analyzing, and Optimizing Agentic AI Systems
Authors: Dany Moshkovich, Sergey Zeltyn
Abstract: Large Language Models (LLMs) are increasingly deployed within agentic systems-collections of interacting, LLM-powered agents that execute complex, adaptive workflows using memory, tools, and dynamic planning. While enabling powerful new capabilities, these systems also introduce unique forms of uncertainty stemming from probabilistic reasoning, evolving memory states, and fluid execution paths. Traditional software observability and operations practices fall short in addressing these challenges. This paper introduces AgentOps: a comprehensive framework for observing, analyzing, optimizing, and automating operation of agentic AI systems. We identify distinct needs across four key roles-developers, testers, site reliability engineers (SREs), and business users-each of whom engages with the system at different points in its lifecycle. We present the AgentOps Automation Pipeline, a six-stage process encompassing behavior observation, metric collection, issue detection, root cause analysis, optimized recommendations, and runtime automation. Throughout, we emphasize the critical role of automation in managing uncertainty and enabling self-improving AI systems-not by eliminating uncertainty, but by taming it to ensure safe, adaptive, and effective operation.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.