Blackbox Dataset Inference for LLM

Authors: Ruikai Zhou, Kang Yang, Xun Chen, Wendy Hui Wang, Guanhong Tao, Jun Xu

Abstract: Today, the training of large language models (LLMs) can involve personally identifiable information and copyrighted material, incurring dataset misuse. To mitigate the problem of dataset misuse, this paper explores \textit{dataset inference}, which aims to detect if a suspect model $\mathcal{M}$ used a victim dataset $\mathcal{D}$ in training. Previous research tackles dataset inference by aggregating results of membership inference attacks (MIAs) -- methods to determine whether individual samples are a part of the training dataset. However, restricted by the low accuracy of MIAs, previous research mandates grey-box access to $\mathcal{M}$ to get intermediate outputs (probabilities, loss, perplexity, etc.) for obtaining satisfactory results. This leads to reduced practicality, as LLMs, especially those deployed for profits, have limited incentives to return the intermediate outputs. In this paper, we propose a new method of dataset inference with only black-box access to the target model (i.e., assuming only the text-based responses of the target model are available). Our method is enabled by two sets of locally built reference models, one set involving $\mathcal{D}$ in training and the other not. By measuring which set of reference model $\mathcal{M}$ is closer to, we determine if $\mathcal{M}$ used $\mathcal{D}$ for training. Evaluations of real-world LLMs in the wild show that our method offers high accuracy in all settings and presents robustness against bypassing attempts.

Submitted to arXiv on 04 Jul. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.