Exploring Advanced LLM Multi-Agent Systems Based on Blackboard Architecture

Authors: Bochen Han, Songmao Zhang

Abstract: In this paper, we propose to incorporate the blackboard architecture into LLM multi-agent systems (MASs) so that (1) agents with various roles can share all the information and others' messages during the whole problem-solving process, (2) agents that will take actions are selected based on the current content of the blackboard, and (3) the selection and execution round is repeated until a consensus is reached on the blackboard. We develop the first implementation of this proposal and conduct experiments on commonsense knowledge, reasoning and mathematical datasets. The results show that our system can be competitive with the SOTA static and dynamic MASs by achieving the best average performance, and at the same time manage to spend less tokens. Our proposal has the potential to enable complex and dynamic problem-solving where well-defined structures or workflows are unavailable.

Submitted to arXiv on 02 Jul. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.