Echoes of AI: Investigating the Downstream Effects of AI Assistants on Software Maintainability

Authors: Markus Borg, Dave Hewett, Nadim Hagatulah, Noric Couderc, Emma Söderberg, Donald Graham, Uttam Kini, Dave Farley

Preprint of study preregistered at ICSME 2025 with In-Principal Acceptance. https://conf.researchr.org/track/icsme-2024/icsme-2024-registered-reports-track

Abstract: [Context] AI assistants, like GitHub Copilot and Cursor, are transforming software engineering. While several studies highlight productivity improvements, their impact on maintainability requires further investigation. [Objective] This study investigates whether co-development with AI assistants affects software maintainability, specifically how easily other developers can evolve the resulting source code. [Method] We conducted a two-phase controlled experiment involving 151 participants, 95% of whom were professional developers. In Phase 1, participants added a new feature to a Java web application, with or without AI assistance. In Phase 2, a randomized controlled trial, new participants evolved these solutions without AI assistance. [Results] Phase 2 revealed no significant differences in subsequent evolution with respect to completion time or code quality. Bayesian analysis suggests that any speed or quality improvements from AI use were at most small and highly uncertain. Observational results from Phase 1 corroborate prior research: using an AI assistant yielded a 30.7% median reduction in completion time, and habitual AI users showed an estimated 55.9% speedup. [Conclusions] Overall, we did not detect systematic maintainability advantages or disadvantages when other developers evolved code co-developed with AI assistants. Within the scope of our tasks and measures, we observed no consistent warning signs of degraded code-level maintainability. Future work should examine risks such as code bloat from excessive code generation and cognitive debt as developers offload more mental effort to assistants.

Submitted to arXiv on 01 Jul. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.