Active Digital Twins via Active Inference

Authors: Matteo Torzoni, Domenico Maisto, Andrea Manzoni, Francesco Donnarumma, Giovanni Pezzulo, Alberto Corigliano

Abstract: Digital twins are transforming engineering and applied sciences by enabling real-time monitoring, simulation, and predictive analysis of physical systems and processes. However, conventional digital twins rely primarily on passive data assimilation, which limits their adaptability in uncertain and dynamic environments. This paper introduces the active digital twin paradigm, based on active inference. Active inference is a neuroscience-inspired, Bayesian framework for probabilistic reasoning and predictive modeling that unifies inference, decision-making, and learning under a unique, free energy minimization objective. By formulating the evolution of the active digital twin as a partially observable Markov decision process, the active inference agent continuously refines its generative model through Bayesian updates and forecasts future states and observations. Decision-making emerges from an optimization process that balances pragmatic exploitation (maximizing goal-directed utility) and epistemic exploration or information gain (actively resolving uncertainty). Actions are dynamically planned to minimize expected free energy, which quantifies both the divergence between predicted and preferred future observations, and the epistemic value of expected information gain about hidden states. This approach enables a new level of autonomy and resilience in digital twins, offering superior spontaneous exploration capabilities. The proposed framework is assessed on the health monitoring and predictive maintenance of a railway bridge.

Submitted to arXiv on 17 Jun. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.