Toward Data Systems That Are Business Semantic Centric and AI Agents Assisted
Authors: Cecil Pang
Abstract: Contemporary businesses operate in dynamic environments requiring rapid adaptation to achieve goals and maintain competitiveness. Existing data platforms often fall short by emphasizing tools over alignment with business needs, resulting in inefficiencies and delays. To address this gap, I propose the Business Semantics Centric, AI Agents Assisted Data System (BSDS), a holistic system that integrates architecture, workflows, and team organization to ensure data systems are tailored to business priorities rather than dictated by technical constraints. BSDS redefines data systems as dynamic enablers of business success, transforming them from passive tools into active drivers of organizational growth. BSDS has a modular architecture that comprises curated data linked to business entities, a knowledge base for context-aware AI agents, and efficient data pipelines. AI agents play a pivotal role in assisting with data access and system management, reducing human effort, and improving scalability. Complementing this architecture, BSDS incorporates workflows optimized for both exploratory data analysis and production requirements, balancing speed of delivery with quality assurance. A key innovation of BSDS is its incorporation of the human factor. By aligning data team expertise with business semantics, BSDS bridges the gap between technical capabilities and business needs. Validated through real-world implementation, BSDS accelerates time-to-market for data-driven initiatives, enhances cross-functional collaboration, and provides a scalable blueprint for businesses of all sizes. Future research can build on BSDS to explore optimization strategies using complex systems and adaptive network theories, as well as developing autonomous data systems leveraging AI agents.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.