MCP-Zero: Proactive Toolchain Construction for LLM Agents from Scratch

Authors: Xiang Fei, Xiawu Zheng, Hao Feng

License: CC BY 4.0

Abstract: Function-calling has enabled large language models (LLMs) to act as tool-using agents, but injecting thousands of tool schemas into the prompt is costly and error-prone. We introduce MCP-Zero, a proactive agent framework that lets the LLM itself decide when and which external tools to retrieve, thereby assembling a task-specific toolchain from scratch. The framework is built upon three components: (1) Proactive Tool Request, where the model emits a structured $\left<\operatorname{tool\_assistant}\right>$ block that explicitly specifies the desired server and task; (2) Hierarchical Vector Routing, a coarse-to-fine retrieval algorithm that first selects candidate servers and then ranks tools within each server based on the semantic similarity; (3) Iterative Proactive Invocation, enabling multi-round, cross-domain toolchain construction with minimal context overhead, and allowing the model to iteratively revise its request when the returned tools are insufficient. To evaluate our approach we also compile MCP-tools, a retrieval dataset comprising 308 MCP servers and 2,797 tools extracted from the official Model-Context-Protocol repository and normalized into a unified JSON schema. Experiments show that MCP-Zero (i) effectively addresses the context overhead problem of existing methods and accurately selects the correct tool from a pool of nearly 3,000 candidates (248.1k tokens); (ii) reduces token consumption by 98\% on the APIbank while maintaining high accuracy; and (iii) supports multi-turn tool invocation with consistent accuracy across rounds. The code and dataset will be released soon.

Submitted to arXiv on 01 Jun. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.