Learning to Learn with Quantum Optimization via Quantum Neural Networks
Authors: Kuan-Cheng Chen, Hiromichi Matsuyama, Wei-Hao Huang
Abstract: Quantum Approximate Optimization Algorithms (QAOA) promise efficient solutions to classically intractable combinatorial optimization problems by harnessing shallow-depth quantum circuits. Yet, their performance and scalability often hinge on effective parameter optimization, which remains nontrivial due to rugged energy landscapes and hardware noise. In this work, we introduce a quantum meta-learning framework that combines quantum neural networks, specifically Quantum Long Short-Term Memory (QLSTM) architectures, with QAOA. By training the QLSTM optimizer on smaller graph instances, our approach rapidly generalizes to larger, more complex problems, substantially reducing the number of iterations required for convergence. Through comprehensive benchmarks on Max-Cut and Sherrington-Kirkpatrick model instances, we demonstrate that QLSTM-based optimizers converge faster and achieve higher approximation ratios compared to classical baselines, thereby offering a robust pathway toward scalable quantum optimization in the NISQ era.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.