Convolutional Autoencoders for Data Compression and Anomaly Detection in Small Satellite Technologies

Authors: Dishanand Jayeprokash, Julia Gonski

arXiv: 2505.00040v1 - DOI (astro-ph.IM)
10 pages, 6 figures

Abstract: Small satellite technologies have enhanced the potential and feasibility of geodesic missions, through simplification of design and decreased costs allowing for more frequent launches. On-satellite data acquisition systems can benefit from the implementation of machine learning (ML), for better performance and greater efficiency on tasks such as image processing or feature extraction. This work presents convolutional autoencoders for implementation on the payload of small satellites, designed to achieve dual functionality of data compression for more efficient off-satellite transmission, and at-source anomaly detection to inform satellite data-taking. This capability is demonstrated for a use case of disaster monitoring using aerial image datasets of the African continent, offering avenues for both novel ML-based approaches in small satellite applications along with the expansion of space technology and artificial intelligence in Africa.

Submitted to arXiv on 29 Apr. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.