Alleviating the Hubble Tension with a Local Void and Transitions of the Absolute Magnitude
Authors: Jing-Yi Jia, Jia-Lei Niu, Da-Chun Qiang, Hao Wei
Abstract: Nowadays, one of the well-known serious challenges in cosmology is the Hubble tension, namely the discrepancy between the Hubble constants from the local observation of Type Ia supernova (SNIa) and the high-$z$ observation of cosmic microwave background (CMB). Here, we are interested in alleviating the Hubble tension with a local void. The key idea is assuming that we live in a locally underdense void, where one will feel a faster expansion rate compared to the cosmic average. In the literature, it was found that a local void cannot satisfyingly alleviate the Hubble tension, since it is not preferred over the $\Lambda$CDM model by the observations such as the Pantheon SNIa sample, especially in terms of the information criteria AIC and BIC. In the present work, we try to alleviate the Hubble tension with a local void and transitions of the absolute magnitude $M$, by using the Pantheon+ SNIa sample alone or jointly with the CMB data of Planck 2018. We find that the Hubble tension can be satisfyingly alleviated, while the $\Lambda$LTB void models are strongly preferred by the observations.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.