Monoidal Rips: Stable Multiparameter Filtrations of Directed Networks
Authors: Nello Blaser, Morten Brun, Odin Hoff Gardaa, Lars M. Salbu
Abstract: We introduce the monoidal Rips filtration, a filtered simplicial set for weighted directed graphs and other lattice-valued networks. Our construction generalizes the Vietoris-Rips filtration for metric spaces by replacing the maximum operator, determining the filtration values, with a more general monoidal product. We establish interleaving guarantees for the monoidal Rips persistent homology, capturing existing stability results for real-valued networks. When the lattice is a product of totally ordered sets, we are in the setting of multiparameter persistence. Here, the interleaving distance is bounded in terms of a generalized network distance. We use this to prove a novel stability result for the sublevel Rips bifiltration. Our experimental results show that our method performs better than flagser in a graph regression task, and that combining different monoidal products in point cloud classification can improve performance.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.