Internet of Things-Based Smart Precision Farming in Soilless Agriculture: Opportunities and Challenges for Global Food Security

Authors: Monica Dutta, Deepali Gupta, Sumegh Tharewal, Deepam Goyal, Jasminder Kaur Sandhu, Manjit Kaur, Ahmad Ali Alzubi, Jazem Mutared Alanazi

License: CC BY 4.0

Abstract: The rapid growth of the global population and the continuous decline in cultivable land pose significant threats to food security. This challenge worsens as climate change further reduces the availability of farmland. Soilless agriculture, such as hydroponics, aeroponics, and aquaponics, offers a sustainable solution by enabling efficient crop cultivation in controlled environments. The integration of the Internet of Things (IoT) with smart precision farming improves resource efficiency, automates environmental control, and ensures stable and high-yield crop production. IoT-enabled smart farming systems utilize real-time monitoring, data-driven decision-making, and automation to optimize water and nutrient usage while minimizing human intervention. This paper explores the opportunities and challenges of IoT-based soilless farming, highlighting its role in sustainable agriculture, urban farming, and global food security. These advanced farming methods ensure greater productivity, resource conservation, and year-round cultivation. However, they also face challenges such as high initial investment, technological dependency, and energy consumption. Through a comprehensive study, bibliometric analysis, and comparative analysis, this research highlights current trends and research gaps. It also outlines future directions for researchers, policymakers, and industry stakeholders to drive innovation and scalability in IoT-driven soilless agriculture. By emphasizing the benefits of vertical farming and Controlled Environment Agriculture (CEA)-enabled soilless techniques, this paper supports informed decision-making to address food security challenges and promote sustainable agricultural innovations.

Submitted to arXiv on 15 Mar. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.