Light-R1: Curriculum SFT, DPO and RL for Long COT from Scratch and Beyond
Authors: Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu Tang, Xiaowei Lv, Haosheng Zou, Yongchao Deng, Shousheng Jia, Xiangzheng Zhang
Abstract: This paper introduces Light-R1, an open-source suite for training long reasoning models using reproducible and cost-effective methodology. Given the proprietary nature of data used in the DeepSeek-R1 series, we develop an alternative approach leveraging exclusively public data and models. Our curriculum training progressively increases data difficulty, combined with multi-staged post-training. Our Light-R1-32B model, trained from Qwen2.5-32B-Instruct, outperforms DeepSeek-R1-Distill-Qwen-32B in math reasoning. Experimental results show that this curriculum approach becomes more effective when distinct, diverse datasets are available for different training stages: fine-tuning DeepSeek-R1-Distilled models (pre-tuned by DeepSeek team on proprietary data) with 3,000 challenging examples from our curriculum dataset yielded state-of-the-art 7B and 14B models, while the 32B model, Light-R1-32B-DS performed comparably to QwQ-32B and DeepSeek-R1. Furthermore, we extend our work by applying GRPO on long reasoning models. Our final Light-R1-14B-DS achieves SOTA performance among 14B models in math, with AIME24 & 25 scores of 74.0 and 60.2 respectively, surpassing many 32B models and DeepSeek-R1-Distill-Llama-70B. Despite math-focused training, Light-R1-14B-DS demonstrates strong cross-domain generalization. Light-R1 represents a significant advancement in making sophisticated reasoning models more accessible and implementable in real-world applications. Our models, training data and code have been made available at https://github.com/Qihoo360/Light-R1.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.