Linear Representations of Political Perspective Emerge in Large Language Models
Authors: Junsol Kim, James Evans, Aaron Schein
Abstract: Large language models (LLMs) have demonstrated the ability to generate text that realistically reflects a range of different subjective human perspectives. This paper studies how LLMs are seemingly able to reflect more liberal versus more conservative viewpoints among other political perspectives in American politics. We show that LLMs possess linear representations of political perspectives within activation space, wherein more similar perspectives are represented closer together. To do so, we probe the attention heads across the layers of three open transformer-based LLMs (Llama-2-7b-chat, Mistral-7b-instruct, Vicuna-7b). We first prompt models to generate text from the perspectives of different U.S. lawmakers. We then identify sets of attention heads whose activations linearly predict those lawmakers' DW-NOMINATE scores, a widely-used and validated measure of political ideology. We find that highly predictive heads are primarily located in the middle layers, often speculated to encode high-level concepts and tasks. Using probes only trained to predict lawmakers' ideology, we then show that the same probes can predict measures of news outlets' slant from the activations of models prompted to simulate text from those news outlets. These linear probes allow us to visualize, interpret, and monitor ideological stances implicitly adopted by an LLM as it generates open-ended responses. Finally, we demonstrate that by applying linear interventions to these attention heads, we can steer the model outputs toward a more liberal or conservative stance. Overall, our research suggests that LLMs possess a high-level linear representation of American political ideology and that by leveraging recent advances in mechanistic interpretability, we can identify, monitor, and steer the subjective perspective underlying generated text.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.