Deep-reinforcement-learning-based separation control in a two-dimensional airfoil

Authors: Xavier Garcia, Arnau Miró, Pol Suárez, Francisco Álcantara-Ávila, Jean Rabault, Bernat Font, Oriol Lehmkuhl, Ricardo Vinuesa

arXiv: 2502.16993v1 - DOI (physics.flu-dyn)
License: CC BY 4.0

Abstract: The aim of this study is to discover new active-flow-control (AFC) techniques for separation mitigation in a two-dimensional NACA 0012 airfoil at a Reynolds number of 3000. To find these AFC strategies, a framework consisting of a deep-reinforcement-learning (DRL) agent has been used to determine the action strategies to apply to the flow. The actions involve blowing and suction through jets at the airfoil surface. The flow is simulated with the numerical code Alya, which is a low-dissipation finite-element code, on a high-performance computing system. Various control strategies obtained through DRL led to 43.9% drag reduction, while others yielded an increase in aerodynamic efficiency of 58.6%. In comparison, periodic-control strategies demonstrated lower energy efficiency while failing to achieve the same level of aerodynamic improvements as the DRL-based approach. These gains have been attained through the implementation of a dynamic, closed-loop, time-dependent, active control mechanism over the airfoil.

Submitted to arXiv on 24 Feb. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.