$L^2$ Stability of Simple Shocks for Spatially Heterogeneous Conservation Laws

Authors: Shyam Sundar Ghoshal, Parasuram Venkatesh

22 pages

Abstract: In this paper, we consider scalar conservation laws with smoothly varying spatially heterogeneous flux that is convex in the conserved variable. We show that under certain assumptions, a shock wave connecting two constant states emerges in finite time for all $L^{\infty}$ initial data satisfying the same far-field conditions. Under an additional assumption on the mixed partial derivative of the flux, we establish the stability of these simple shock profiles with respect to $L^2$ perturbations. The main tools we use are Dafermos' generalised characteristics for the evolution analysis and the relative entropy method for stability.

Submitted to arXiv on 19 Feb. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.