Memory Analysis on the Training Course of DeepSeek Models
Authors: Ping Zhang, Lei Su
Abstract: We present a theoretical analysis of GPU memory consumption during the training of DeepSeek models such as DeepSeek-v2 and DeepSeek-v3. Our primary objective is to clarify the device-level memory requirements associated with various distributed training configurations. Specifically, we examine critical factors influencing memory usage, including micro-batch size, activation recomputation policies, 3D parallelism, and ZeRO optimizations. It is important to emphasize that the training policies discussed in this report are not representative of DeepSeek's official configurations. Instead, they are explored to provide a deeper understanding of memory dynamics in training of large-scale mixture-of-experts model.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.