Generic Multimodal Spatially Graph Network for Spatially Embedded Network Representation Learning
Authors: Xudong Fan, Jürgen Hackl
Abstract: Spatially embedded networks (SENs) represent a special type of complex graph, whose topologies are constrained by the networks' embedded spatial environments. The graph representation of such networks is thereby influenced by the embedded spatial features of both nodes and edges. Accurate network representation of the graph structure and graph features is a fundamental task for various graph-related tasks. In this study, a Generic Multimodal Spatially Graph Convolutional Network (GMu-SGCN) is developed for efficient representation of spatially embedded networks. The developed GMu-SGCN model has the ability to learn the node connection pattern via multimodal node and edge features. In order to evaluate the developed model, a river network dataset and a power network dataset have been used as test beds. The river network represents the naturally developed SENs, whereas the power network represents a man-made network. Both types of networks are heavily constrained by the spatial environments and uncertainties from nature. Comprehensive evaluation analysis shows the developed GMu-SGCN can improve accuracy of the edge existence prediction task by 37.1\% compared to a GraphSAGE model which only considers the node's position feature in a power network test bed. Our model demonstrates the importance of considering the multidimensional spatial feature for spatially embedded network representation.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.