Unveiling the largest structures in the nearby Universe: Discovery of the Quipu superstructure

Authors: Hans Boehringer, Gayoung Chon, Joachim Truemper, Renee C. Kraan-Korteweg, Norbert Schartel

arXiv: 2501.19236v1 - DOI (astro-ph.CO)
accepted for publication in Astronomy and Astrophysis, 13 pages, 20 figures
License: CC BY-NC-SA 4.0

Abstract: For a precise determination of cosmological parameters we need to understand the effects of the local large-scale structure of the Universe on the measurements. They include modifications of the cosmic microwave background, distortions of sky images by large-scale gravitational lensing, and the influence of large-scale streaming motions on measurements of the Hubble constant. The streaming motions, for example, originate from mass concentrations with distances up to 250 Mpc. In this paper we provide the first all-sky assessment of the largest structures at distances between 130 and 250 Mpc and discuss their observational consequences, using X-ray galaxy clusters to map the matter density distribution. Among the five most prominent superstructures found, the largest has a length longer than 400 Mpc with an estimated mass of about 2 10e17 Msun. This entity, which we named Quipu, is the largest cosmic structure discovered to date. These superstructures contain about 45% of the galaxy clusters, 30% of the galaxies, 25% of the matter, and occupy a volume fraction of 13%, thus constituting a major part of the Universe. The galaxy density is enhanced in the environment of superstructures out to larger distances from the nearest member clusters compared to the outskirts of clusters in the field. We find superstructures with similar properties in simulations based on Lambda-CDM cosmology models. We show that the superstructures should produce a modification on the cosmic microwave background through the integrated Sachs-Wolf effect. Searching for this effect in the Planck data we found a signal of the expected strength, however, with low significance. Characterising these superstructures is also important for astrophysical research, for example the study of the environmental dependence of galaxy evolution as well as for precision tests of cosmological models.

Submitted to arXiv on 31 Jan. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.