It's not $σ_8$ : constraining the non-linear matter power spectrum with the Dark Energy Survey Year-5 supernova sample

Authors: Paul Shah, T. M. Davis, M. Vincenzi, P. Armstrong, D. Brout, R. Camilleri, L. Galbany, M. S. S. Gill, D. Huterer, N. Jeffrey, O. Lahav, J. Lee, C. Lidman, A. Möller, M. Sullivan, L. Whiteway, P. Wiseman, S. Allam, M. Aguena, J. Annis, J. Blazek, D. Brooks, A. Carnero Rosell, J. Carretero, C. Conselice, L. N. da Costa, M. E. S. Pereira, S. Desai, H. T. Diehl, P. Doel, S. Everett, I. Ferrero, B. Flaugher, J. Frieman, J. García-Bellido, E. Gaztanaga, G. Giannini, D. Gruen, R. A. Gruendl, G. Gutierrez, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, S. Lee, J. L. Marshall, J. Mena-Fernández, R. Miquel, A. Palmese, A. Pieres, A. A. Plazas Malagón, A. Porredon, S. Samuroff, E. Sanchez, I. Sevilla-Noarbe, M. Smith, E. Suchyta, M. E. C. Swanson, G. Tarle, D. L. Tucker, N. Weaverdyck

arXiv: 2501.19117v1 - DOI (astro-ph.CO)
12 pages, submitted to MNRAS. arXiv admin note: text overlap with arXiv:2410.07956
License: CC BY 4.0

Abstract: The weak gravitational lensing magnification of Type Ia supernovae (SNe Ia) is sensitive to the matter power spectrum on scales $k>1 h$ Mpc$^{-1}$, making it unwise to interpret SNe Ia lensing in terms of power on linear scales. We compute the probability density function of SNe Ia magnification as a function of standard cosmological parameters, plus an empirical parameter $A_{\rm mod}$ which describes the suppression or enhancement of matter power on non-linear scales compared to a cold dark matter only model. While baryons are expected to enhance power on the scales relevant to SN Ia lensing, other physics such as neutrino masses or non-standard dark matter may suppress power. Using the Dark Energy Survey Year-5 sample, we find $A_{\rm mod} = 0.77^{+0.69}_{-0.40}$ (68\% credible interval around the median). Although the median is consistent with unity there are hints of power suppression, with $A_{\rm mod} < 1.09$ at 68\% credibility.

Submitted to arXiv on 31 Jan. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.