Towards Iris Presentation Attack Detection with Foundation Models

Authors: Juan E. Tapia, Lázaro Janier González-Soler, Christoph Busch

License: CC BY-NC-ND 4.0

Abstract: Foundation models are becoming increasingly popular due to their strong generalization capabilities resulting from being trained on huge datasets. These generalization capabilities are attractive in areas such as NIR Iris Presentation Attack Detection (PAD), in which databases are limited in the number of subjects and diversity of attack instruments, and there is no correspondence between the bona fide and attack images because, most of the time, they do not belong to the same subjects. This work explores an iris PAD approach based on two foundation models, DinoV2 and VisualOpenClip. The results show that fine-tuning prediction with a small neural network as head overpasses the state-of-the-art performance based on deep learning approaches. However, systems trained from scratch have still reached better results if bona fide and attack images are available.

Submitted to arXiv on 10 Jan. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.