From Worms to Mice: Homeostasis Maybe All You Need
Authors: Jesus Marco de Lucas
Abstract: In this brief and speculative commentary, we explore ideas inspired by neural networks in machine learning, proposing that a simple neural XOR motif, involving both excitatory and inhibitory connections, may provide the basis for a relevant mode of plasticity in neural circuits of living organisms, with homeostasis as the sole guiding principle. This XOR motif simply signals the discrepancy between incoming signals and reference signals, thereby providing a basis for a loss function in learning neural circuits, and at the same time regulating homeostasis by halting the propagation of these incoming signals. The core motif uses a 4:1 ratio of excitatory to inhibitory neurons, and supports broader neural patterns such as the well-known 'winner takes all' (WTA) mechanism. We examined the prevalence of the XOR motif in the published connectomes of various organisms with increasing complexity, and found that it ranges from tens (in C. elegans) to millions (in several Drosophila neuropils) and more than tens of millions (in mouse V1 visual cortex). If validated, our hypothesis identifies two of the three key components in analogy to machine learning models: the architecture and the loss function. And we propose that a relevant type of biological neural plasticity is simply driven by a basic control or regulatory system, which has persisted and adapted despite the increasing complexity of organisms throughout evolution.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.