Large Language Model Federated Learning with Blockchain and Unlearning for Cross-Organizational Collaboration

Authors: Xuhan Zuo, Minghao Wang, Tianqing Zhu, Shui Yu, Wanlei Zhou

Abstract: Large language models (LLMs) have transformed the way computers understand and process human language, but using them effectively across different organizations remains still difficult. When organizations work together to improve LLMs, they face several main challenges. First, organizations hesitate to share their valuable data with others. Second, competition between organizations creates trust problems during collaboration. Third, new privacy laws require organizations to be able to delete specific data when requested, which is especially difficult when multiple organizations are learning from shared data. Traditional federated learning approaches do not address these interconnected challenges, particularly in scenarios where participants cannot fully trust each other or the central aggregator. To overcome these limitations, we propose a hybrid blockchain-based federated learning framework that uniquely combines public and private blockchain architectures with multi-agent reinforcement learning. Our framework enables transparent sharing of model update through the public blockchain while protecting sensitive computations in private chains. Each organization operates as an intelligent agent, using Q-learning to optimize its participation strategy and resource allocation, thus aligning individual incentives with collective goals. Notably, we introduce an efficient unlearning mechanism based on Low-Rank Adaptation (LoRA) that enables selective removal of specific data contributions without compromising the model's overall performance. Through extensive experimentation on real-world datasets, we demonstrate that our framework effectively balances privacy protection, trust establishment, and regulatory compliance while maintaining high model performance.

Submitted to arXiv on 18 Dec. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.