Artificial Intelligence in Traffic Systems

Authors: Ritwik Raj Saxena

35 pages, 17343 words, 6 figures
License: CC BY 4.0

Abstract: Existing research on AI-based traffic management systems, utilizing techniques such as fuzzy logic, reinforcement learning, deep neural networks, and evolutionary algorithms, demonstrates the potential of AI to transform the traffic landscape. This article endeavors to review the topics where AI and traffic management intersect. It comprises areas like AI-powered traffic signal control systems, automatic distance and velocity recognition (for instance, in autonomous vehicles, hereafter AVs), smart parking systems, and Intelligent Traffic Management Systems (ITMS), which use data captured in real-time to keep track of traffic conditions, and traffic-related law enforcement and surveillance using AI. AI applications in traffic management cover a wide range of spheres. The spheres comprise, inter alia, streamlining traffic signal timings, predicting traffic bottlenecks in specific areas, detecting potential accidents and road hazards, managing incidents accurately, advancing public transportation systems, development of innovative driver assistance systems, and minimizing environmental impact through simplified routes and reduced emissions. The benefits of AI in traffic management are also diverse. They comprise improved management of traffic data, sounder route decision automation, easier and speedier identification and resolution of vehicular issues through monitoring the condition of individual vehicles, decreased traffic snarls and mishaps, superior resource utilization, alleviated stress of traffic management manpower, greater on-road safety, and better emergency response time.

Submitted to arXiv on 16 Dec. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.