Fast Mutual Information Computation for Large Binary Datasets

Authors: Andre O. Falcao

License: CC BY 4.0

Abstract: Mutual Information (MI) is a powerful statistical measure that quantifies shared information between random variables, particularly valuable in high-dimensional data analysis across fields like genomics, natural language processing, and network science. However, computing MI becomes computationally prohibitive for large datasets where it is typically required a pairwise computational approach where each column is compared to others. This work introduces a matrix-based algorithm that accelerates MI computation by leveraging vectorized operations and optimized matrix calculations. By transforming traditional pairwise computational approaches into bulk matrix operations, the proposed method enables efficient MI calculation across all variable pairs. Experimental results demonstrate significant performance improvements, with computation times reduced up to 50,000 times in the largest dataset using optimized implementations, particularly when utilizing hardware optimized frameworks. The approach promises to expand MI's applicability in data-driven research by overcoming previous computational limitations.

Submitted to arXiv on 29 Nov. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.