Top-$nσ$: Not All Logits Are You Need

Authors: Chenxia Tang, Jianchun Liu, Hongli Xu, Liusheng Huang

Abstract: Large language models (LLMs) typically employ greedy decoding or low-temperature sampling for reasoning tasks, reflecting a perceived trade-off between diversity and accuracy. We challenge this convention by introducing top-$n\sigma$, a novel sampling method that operates directly on pre-softmax logits by leveraging a statistical threshold. Our key insight is that logits naturally separate into a Gaussian-distributed noisy region and a distinct informative region, enabling efficient token filtering without complex probability manipulations. Unlike existing methods (e.g., top-$p$, min-$p$) that inadvertently include more noise tokens at higher temperatures, top-$n\sigma$ maintains a stable sampling space regardless of temperature scaling. We also provide a theoretical analysis of top-$n\sigma$ to better understand its behavior. The extensive experimental results across four reasoning-focused datasets demonstrate that our method not only outperforms existing sampling approaches but also surpasses greedy decoding, while maintaining consistent performance even at high temperatures.

Submitted to arXiv on 12 Nov. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.