StepCountJITAI: simulation environment for RL with application to physical activity adaptive intervention

Authors: Karine Karine, Benjamin M. Marlin

Accepted at NeurIPS 2024 workshop on Behavioral ML
License: CC BY 4.0

Abstract: The use of reinforcement learning (RL) to learn policies for just-in-time adaptive interventions (JITAIs) is of significant interest in many behavioral intervention domains including improving levels of physical activity. In a messaging-based physical activity JITAI, a mobile health app is typically used to send messages to a participant to encourage engagement in physical activity. In this setting, RL methods can be used to learn what intervention options to provide to a participant in different contexts. However, deploying RL methods in real physical activity adaptive interventions comes with challenges: the cost and time constraints of real intervention studies result in limited data to learn adaptive intervention policies. Further, commonly used RL simulation environments have dynamics that are of limited relevance to physical activity adaptive interventions and thus shed little light on what RL methods may be optimal for this challenging application domain. In this paper, we introduce StepCountJITAI, an RL environment designed to foster research on RL methods that address the significant challenges of policy learning for adaptive behavioral interventions.

Submitted to arXiv on 01 Nov. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.