Customized FinGPT Search Agents Using Foundation Models
Authors: Felix Tian, Ajay Byadgi, Daniel Kim, Daochen Zha, Matt White, Kairong Xiao, Xiao-Yang Liu Yanglet
Abstract: Current large language models (LLMs) have proven useful for analyzing financial data, but most existing models, such as BloombergGPT and FinGPT, lack customization for specific user needs. In this paper, we address this gap by developing FinGPT Search Agents tailored for two types of users: individuals and institutions. For individuals, we leverage Retrieval-Augmented Generation (RAG) to integrate local documents and user-specified data sources. For institutions, we employ dynamic vector databases and fine-tune models on proprietary data. There are several key issues to address, including data privacy, the time-sensitive nature of financial information, and the need for fast responses. Experiments show that FinGPT agents outperform existing models in accuracy, relevance, and response time, making them practical for real-world applications.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.