MarineFormer: A Spatio-Temporal Attention Model for USV Navigation in Dynamic Marine Environments

Authors: Ehsan Kazemi, Dechen Gao, Iman Soltani

Abstract: Autonomous navigation in marine environments can be extremely challenging, especially in the presence of spatially varying flow disturbances and dynamic and static obstacles. In this work, we demonstrate that incorporating local flow field measurements fundamentally alters the nature of the problem, transforming otherwise unsolvable navigation scenarios into tractable ones. However, the mere availability of flow data is not sufficient; it must be effectively fused with conventional sensory inputs such as ego-state and obstacle states. To this end, we propose \textbf{MarineFormer}, a Transformer-based policy architecture that integrates two complementary attention mechanisms: spatial attention for sensor fusion, and temporal attention for capturing environmental dynamics. MarineFormer is trained end-to-end via reinforcement learning in a 2D simulated environment with realistic flow features and obstacles. Extensive evaluations against classical and state-of-the-art baselines show that our approach improves episode completion success rate by nearly 23\% while reducing path length. Ablation studies further highlight the critical role of flow measurements and the effectiveness of our proposed architecture in leveraging them.

Submitted to arXiv on 17 Oct. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.