TAEGAN: Generating Synthetic Tabular Data For Data Augmentation

Authors: Jiayu Li, Zilong Zhao, Kevin Yee, Uzair Javaid, Biplab Sikdar

Abstract: Synthetic tabular data generation has gained significant attention for its potential in data augmentation, software testing and privacy-preserving data sharing. However, most research has primarily focused on larger datasets and evaluating their quality in terms of metrics like column-wise statistical distributions and inter-feature correlations, while often overlooking its utility for data augmentation, particularly for datasets whose data is scarce. In this paper, we propose Tabular Auto-Encoder Generative Adversarial Network (TAEGAN), an improved GAN-based framework for generating high-quality tabular data. Although large language models (LLMs)-based methods represent the state-of-the-art in synthetic tabular data generation, they are often overkill for small datasets due to their extensive size and complexity. TAEGAN employs a masked auto-encoder as the generator, which for the first time introduces the power of self-supervised pre-training in tabular data generation so that essentially exposes the networks to more information. We extensively evaluate TAEGAN against five state-of-the-art synthetic tabular data generation algorithms. Results from 10 datasets show that TAEGAN outperforms existing deep-learning-based tabular data generation models on 9 out of 10 datasets on the machine learning efficacy and achieves superior data augmentation performance on 7 out of 8 smaller datasets.

Submitted to arXiv on 02 Oct. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.