ASMA: An Adaptive Safety Margin Algorithm for Vision-Language Drone Navigation via Scene-Aware Control Barrier Functions
Authors: Sourav Sanyal, Kaushik Roy
Abstract: In the rapidly evolving field of vision-language navigation (VLN), ensuring robust safety mechanisms remains an open challenge. Control barrier functions (CBFs) are efficient tools which guarantee safety by solving an optimal control problem. In this work, we consider the case of a teleoperated drone in a VLN setting, and add safety features by formulating a novel scene-aware CBF using ego-centric observations obtained through an RGB-D sensor. As a baseline, we implement a vision-language understanding module which uses the contrastive language image pretraining (CLIP) model to query about a user-specified (in natural language) landmark. Using the YOLO (You Only Look Once) object detector, the CLIP model is queried for verifying the cropped landmark, triggering downstream navigation. To improve navigation safety of the baseline, we propose ASMA -- an Adaptive Safety Margin Algorithm -- that crops the drone's depth map for tracking moving object(s) to perform scene-aware CBF evaluation on-the-fly. By identifying potential risky observations from the scene, ASMA enables real-time adaptation to unpredictable environmental conditions, ensuring optimal safety bounds on a VLN-powered drone actions. Using the robot operating system (ROS) middleware on a parrot bebop2 quadrotor in the gazebo environment, ASMA offers 59.4% - 61.8% increase in success rates with insignificant 5.4% - 8.2% increases in trajectory lengths compared to the baseline CBF-less VLN while recovering from unsafe situations.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.