Equilibria and Their Stability Do Not Depend on the Control Barrier Function in Safe Optimization-Based Control
Authors: Yiting Chen, Pol Mestres, Jorge Cortes, Emiliano Dall'Anese
Abstract: Control barrier functions (CBFs) play a critical role in the design of safe optimization-based controllers for control-affine systems. Given a CBF associated with a desired ``safe'' set, the typical approach consists in embedding CBF-based constraints into the optimization problem defining the control law to enforce forward invariance of the safe set. While this approach effectively guarantees safety for a given CBF, the CBF-based control law can introduce undesirable equilibrium points (i.e., points that are not equilibria of the original system); open questions remain on how the choice of CBF influences the number and locations of undesirable equilibria and, in general, the dynamics of the closed-loop system. This paper investigates how the choice of CBF impacts the dynamics of the closed-loop system and shows that: (i) The CBF does not affect the number, location, and (local) stability properties of the equilibria in the interior of the safe set; (ii) undesirable equilibria only appear on the boundary of the safe set; and, (iii) the number and location of undesirable equilibria for the closed-loop system do not depend of the choice of the CBF. Additionally, for the well-established safety filters and controllers based on both CBF and control Lyapunov functions (CLFs), we show that the stability properties of equilibria of the closed-loop system are independent of the choice of the CBF and of the associated extended class-K function.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.