SAB:A Stealing and Robust Backdoor Attack based on Steganographic Algorithm against Federated Learning

Authors: Weida Xu, Yang Xu, Sicong Zhang

Abstract: Federated learning, an innovative network architecture designed to safeguard user privacy, is gaining widespread adoption in the realm of technology. However, given the existence of backdoor attacks in federated learning, exploring the security of federated learning is significance. Nevertheless, the backdoors investigated in current federated learning research can be readily detected by human inspection or resisted by detection algorithms. Accordingly, a new goal has been set to develop stealing and robust federated learning backdoor attacks. In this paper, we introduce a novel approach, SAB, tailored specifically for backdoor attacks in federated learning, presenting an alternative gradient updating mechanism. SAB attack based on steganographic algorithm, using image steganographic algorithm to build a full-size trigger to improve the accuracy of backdoors and use multiple loss joint computation to produce triggers. SAB exhibits smaller distances to benign samples and greater imperceptibility to the human eye. As such, our triggers are capable of mitigating or evading specific backdoor defense methods. In SAB, the bottom-95\% method is applied to extend the lifespan of backdoor attacks. It updates the gradient on minor value points to reduce the probability of being cleaned. Finally, the generalization of backdoors is enhanced with Sparse-update to improve the backdoor accuracy.

Submitted to arXiv on 25 Aug. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.