NEAR: A Training-Free Pre-Estimator of Machine Learning Model Performance

Authors: Raphael T. Husistein, Markus Reiher, Marco Eckhoff

13th International Conference on Learning Representations, ICLR 2025, Singapore
21 pages, 9 figures, 13 tables

Abstract: Artificial neural networks have been shown to be state-of-the-art machine learning models in a wide variety of applications, including natural language processing and image recognition. However, building a performant neural network is a laborious task and requires substantial computing power. Neural Architecture Search (NAS) addresses this issue by an automatic selection of the optimal network from a set of potential candidates. While many NAS methods still require training of (some) neural networks, zero-cost proxies promise to identify the optimal network without training. In this work, we propose the zero-cost proxy \textit{Network Expressivity by Activation Rank} (NEAR). It is based on the effective rank of the pre- and post-activation matrix, i.e., the values of a neural network layer before and after applying its activation function. We demonstrate the cutting-edge correlation between this network score and the model accuracy on NAS-Bench-101 and NATS-Bench-SSS/TSS. In addition, we present a simple approach to estimate the optimal layer sizes in multi-layer perceptrons. Furthermore, we show that this score can be utilized to select hyperparameters such as the activation function and the neural network weight initialization scheme.

Submitted to arXiv on 16 Aug. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.