Evaluating SAM2's Role in Camouflaged Object Detection: From SAM to SAM2

Authors: Lv Tang, Bo Li

License: CC BY-NC-ND 4.0

Abstract: The Segment Anything Model (SAM), introduced by Meta AI Research as a generic object segmentation model, quickly garnered widespread attention and significantly influenced the academic community. To extend its application to video, Meta further develops Segment Anything Model 2 (SAM2), a unified model capable of both video and image segmentation. SAM2 shows notable improvements over its predecessor in terms of applicable domains, promptable segmentation accuracy, and running speed. However, this report reveals a decline in SAM2's ability to perceive different objects in images without prompts in its auto mode, compared to SAM. Specifically, we employ the challenging task of camouflaged object detection to assess this performance decrease, hoping to inspire further exploration of the SAM model family by researchers. The results of this paper are provided in \url{https://github.com/luckybird1994/SAMCOD}.

Submitted to arXiv on 31 Jul. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.