SR-Mamba: Effective Surgical Phase Recognition with State Space Model
Authors: Rui Cao, Jiangliu Wang, Yun-Hui Liu
Abstract: Surgical phase recognition is crucial for enhancing the efficiency and safety of computer-assisted interventions. One of the fundamental challenges involves modeling the long-distance temporal relationships present in surgical videos. Inspired by the recent success of Mamba, a state space model with linear scalability in sequence length, this paper presents SR-Mamba, a novel attention-free model specifically tailored to meet the challenges of surgical phase recognition. In SR-Mamba, we leverage a bidirectional Mamba decoder to effectively model the temporal context in overlong sequences. Moreover, the efficient optimization of the proposed Mamba decoder facilitates single-step neural network training, eliminating the need for separate training steps as in previous works. This single-step training approach not only simplifies the training process but also ensures higher accuracy, even with a lighter spatial feature extractor. Our SR-Mamba establishes a new benchmark in surgical video analysis by demonstrating state-of-the-art performance on the Cholec80 and CATARACTS Challenge datasets. The code is accessible at https://github.com/rcao-hk/SR-Mamba.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.