Differentially Private Neural Network Training under Hidden State Assumption
Authors: Ding Chen, Chen Liu
Abstract: We present a novel approach called differentially private stochastic block coordinate descent (DP-SBCD) for training neural networks with provable guarantees of differential privacy under the hidden state assumption. Our methodology incorporates Lipschitz neural networks and decomposes the training process of the neural network into sub-problems, each corresponding to the training of a specific layer. By doing so, we extend the analysis of differential privacy under the hidden state assumption to encompass non-convex problems and algorithms employing proximal gradient descent. Furthermore, in contrast to existing methods, we adopt a novel approach by utilizing calibrated noise sampled from adaptive distributions, yielding improved empirical trade-offs between utility and privacy.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.